

AUTOMATED ROD MOVEMENT TIMING & SEQUENCING TESTING

For Control Rod Drive Mechanism (CRDM) Systems

Timing and sequencing testing of Control Rod Drive Mechanisms (CRDMs) in Pressurized Water Reactors (PWRs) is performed by monitoring the stationary gripper, moveable gripper, and lift coil currents of a group of control or shutdown rods as they are moved in or out of the reactor. This test is normally performed in Westinghouse PWRs near the end of a refueling outage. The outputs of these coils are sampled for each rod and analyzed to ensure proper communication, regulation, and timing of the CRDMs. In most plants, the CRDM test is performed in conjunction with the rod drop time measurements and slave cycler timing tests.

FEATURED BENEFITS

PLANT BENEFITS

- Recover Critical Path Time
- Detect Rod Binding
- Identify Stuck Rods and Other Movement Problems
- Decrease Troubleshooting Time
- Identify Performance Degradation
- Monitor System Reliability

EQUIPMENT BENEFITS

- Connect to All Rods at One Time
- Collect Data in as Little as 15 Minutes
- Portable, Lightweight, Quick Hookup

SOFTWARE BENEFITS

- Timing, Sequencing, and Latching Identified Automatically
- Monitor Coil Current Regulation
- Full Pull Data Collection Provides Analysis of All CRDM Steps (Up & Down)
- Quick Reporting Flags Any Anomalies
- Data Trended from Cycle to Cycle

		Stationary Coils											
tem	Rod ID	T1-T0:		T2-T0:		T3-T0:		T4-T0:		TL-T2:		Tsgd:	
1	H06	271		575		771		1264		95		-12	F
2	H10	272		574		772		1262		109		6	
3	F08	270		575		770		1267		118		11	
4	K08	276		576		776		1265		116		10	
5	F02	271	H	575		771		1270		119		12	
6	**B10	277		577		777		1272		**149		44	
7	K14	271		575		771		1267		125		18	·
8	P06	270	H	574		770		1270		125		17	
9	**B06	272		573		772		1285		**127		22	
10	**F14	271		575		771		1262		**130		23	
11	**P10	271		575		771		1262		**140		33	
12	K02	272		573		772		1284		110		6	

\$\times\$10CFR50 Appendix B Program

For more information please contact: Darrell W. Mitchell | Technical Services Manager Ext: 108 Email: darrell@ams-corp.com Ryan D. O'Hagan | Engineering Project Manager Ext: 103 Email: ryan@ams-corp.com

AMS Technology Center 9119 Cross Park Drive Knoxville, TN 37923, USA

TEL 865 691 1756 FAX 865 691 9344

EMAIL info@ams-corp.com WEB www.ams-corp.com

© 2018 AMS CORPORATION